
SIR PRATEEK JAIN

- . Founder @Physicsaholics
- . Top Physics Faculty on Unacademy (IIT JEE & NEET)
- . 8+ years of teaching experience in top institutes like FIITJEE (Delhi, Indore), CP (KOTA) etc.
- . Produced multiple Top ranks.
- . Research work with HC Verma sir at IIT Kanpur
- . Interviewed by International media.

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS and learn from India's Top Faculties.

@Physicsaholics

@Physicsaholics_prateek

@NEET_Physics

@<u>IITJEE_Physics</u>

physicsaholics.com

Unacademy

Links are also in the description of the video.

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/62

Video Solution on YouTube:-

https://youtu.be/ueQAsYkYtIM

Solution NEET & AIIMS PYQs

Current Electricity (1/3): Current density, Mean free path, Drift Velocity, Resistance, Kirchoff's Current Law

By Physicsaholics Team

PYQs on Following Subtopic:

Current, Current density, Mean free path, Drift Velocity etc.

Q) A charged particle having drift velocity of 7.5×10^{-4} m s⁻¹ in an electric field of 3×10^{-4} m s 10^{-10} Vm^{-1} , has a mobility in m² V⁻¹ s⁻¹ of:

(1)
$$2.5 \times 10^{-6}$$

(2)
$$2.25 \times 10^{-15}$$

(3)
$$2.25 \times 10^{15}$$
 (4) 2.5×10^{6}

$$(4) \ 2.5 \times 10^{6}$$

Ans. 4

Which of the following relations is called as current density?

Company of the Compan	
I^2	A CC
(a) $\frac{1}{a}$ (b) $\frac{1}{a}$	
I^3	AIIMS
$(c) \frac{1}{A^2} (d) -$	$\sqrt{1}$ (1995)

Ans. d

Across a metallic conductor of non-uniform cross-section, a constant potential difference is applied. The quantity which remain constant along the conductor is

[CBSE AIPMT 2015]

- (a) current density
 - (c) drift velocity

- (b) current
- (d) electric field

The mean free path of electrons in a metal is 4×10^{-8} m. The electric field which can give on an average 2 eV energy to an electron in the metal will be in unit of

 Vm^{-1}

(a) 8×10^{7} (c) 8×10^{-11}

[CBSE AIPMT 2009]

(b) 5×10^{-11}

(d) 5×10^7

Ans. d

The velocity of charge carriers of current (about 1 A) in a metal under normal conditions is of the order of

[CBSE AIPMT 1991]

- (a) a fraction of mm/s
- (b) velocity of light
- (c) several thousand m/s
- (d) a few hundred m/s

Ans. a

Assertion: An electrical bulb starts glowing instantly as it is switched on.

Reason: Drift speed of electrons in a metallic wire is very large.

AIIMS

Ans. c

Assertion: A current flows in a conductor only when there is an electric field within the conductor.

Reason: The drift velocity of electron in presence of electric field decreases.

Ans. c

A steady current flows in a metallic conductor of non-uniform cross-section. Which of these quantities is constant along the conductor? Electric field Drift velocity

Current

Current density

(2000, 2016)

Ans. c

Assertion: The conductivity of an electrolyte is very low as compared to a metal at room temperature.

Reason: The number density of free ions in electrolyte is much smaller as compared to number density of free electrons in metals. Further, ions drift much more slowly, being heavier.

Ans. a

PYQs on Following Subtopic:

Resistance & Conductance

The resistance of a wire is Rohm. If it is melted and stretched to n times its original length, its new resistance will be [NEET 2017]

Ans. c

A wire of resistance 4Ω is stretched to twice its original length. The resistance of stretched wire would be [NEET 2013]

- (a) 2Ω
- $(c) 8 \Omega$

- b) 4 Ω
- (d) 16 Ω

Ans. d

A wire of a certain material is stretched slowly by 10 percent. Its new resistance and specific resistance become respectively

- (a) 1.2 times, 1.1 times
- (b) 1.21 times, same
- (c) Both remain the same
- (d) 1.1 times, 1.1 times

[CBSE AIPMT 2008]

- The electric resistance of a certain wire of iron is R. If its length and radius are both doubled, then

 [CBSE AIPMT 2004]
 - (a) the resistance will be doubled and the specific resistance will be halved
 - (b) the resistance will be halved and the specific resistance will remain unchanged
 - (c) the resistance will be halved and the specific resistance will be doubled
 - (d) the resistance and the specific resistance will both remain unchanged

- There are three copper wires of length and cross-sectional area (L, A), (2L, A/2)
 - (L/2, 2 A). In which case is the resistance minimum? [CBSE AIPMT 1997]
 - (a) It is the same in all three cases
 - (b) Wire of cross-sectional area 2 A
 - (c) Wire of cross-sectional area A
 - (d) Wire of cross-sectional area $\frac{1}{2}A$

The masses of the three wires of copper are in the ratio of 1:3:5 and their lengths are in the ratio of 5:3:1. The ratio of their electrical resistance is [CBSE AIPMT 1988]

(a) 1:3:5

(c) 1:25:125

b) 5:3(1)

(d) 125:15:1

Ans. d

When a wire of resistance R is stretched and its radius becomes r/2, then its resistance will be

- (a) 16R
- (c) 4R

b) 2R

(d) R. (1997, 2001 AIIMS

Ans. a

A wire of length L is drawn such that its diameter is reduced to half of its original

diameter. If the initial resistance of the wire was 10 Ω, its new resistance would be

(c) 120Ω

(d) 160Ω . (2003)

Ans. d

PYQs on Following Subtopic:

Effects of temperature on resistance

Q) Which of the following graph represents the variation of resistivity (ρ) with temperature (T) for copper? (1)(3)

Ans. 1

If the resistance of a conductor is 5 Ω at \mathcal{C} 50°C and 7 Ω at 100°C, then the mean temperature coefficient of resistance (of the [CBSE AIPMT 1996] material) is (a) 0.01/°C (b) 0.04/°C

dois not small Ans. a

PYQs on Following Subtopic:

Ohmic conductors

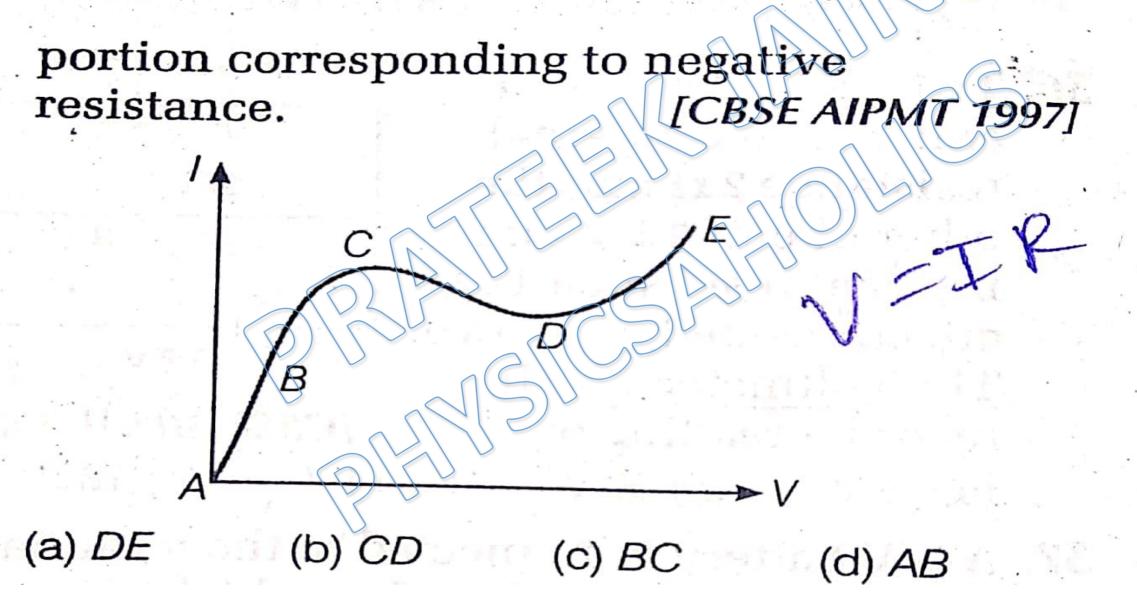
The resistance of a discharge tube is [CBSE AIPMT 1999]

- (a) zero(c) non-ohmic

(b) ohmic

d) infinity

Ans. c


Assertion: Ohm's law is applicable for all conducting elements.

Reason: Ohm's law is a fundamental law.

(2007) AIIMS

Ans. d

From the graph between current I and voltage V shown in figure, identify the

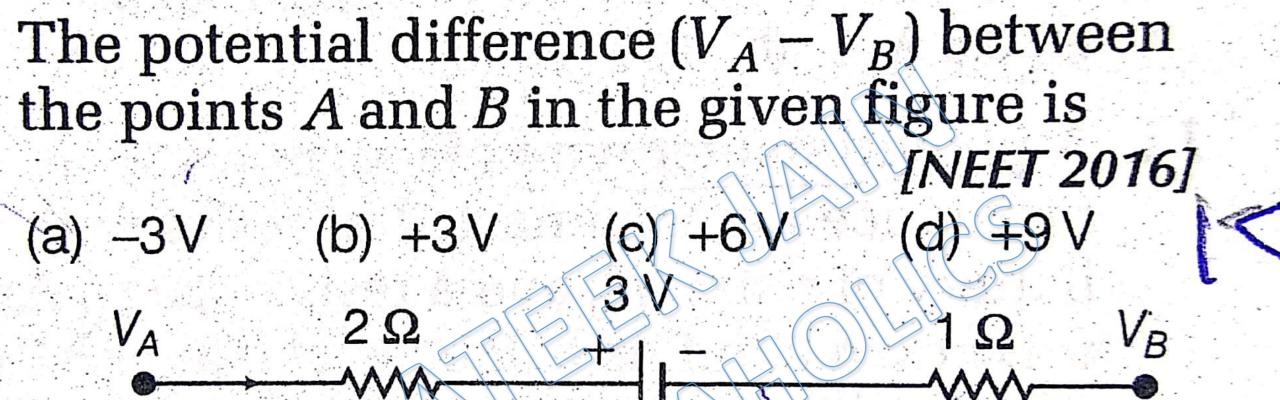
Ans. b

PYQs on Following Subtopic:

Kirchoff's Current Law

Kirchhoff's first law, i.e. $\Sigma i = 0$ at a junction, deals with the conservation of [CBSE AIPMT 1997]

- (a) angular momentum
- (c) energy


- (b) linear momentum
- (d) charge

Ans. d

. Kirchhoff's first law of electricity follows will [CBSE AIPMT 1992]

- (a) only law of conservation of energy
- (b) only law of conservation of charge
- (c) law of conservation of both energy and charge
- (d) sometimes law of conservation of energy and some other times law of conservation of charge

Ans. b

Ans. d

The internal resistance of a 2.1 V cell which gives a current of 0.2 A through a resistance of 10 Ω is [NEET 2013]

(a) 0.2Ω

(c) 0.8Ω

b) 0.5Ω

(d) 1.0Ω

RVL

Ans. b

. A current of 2 A flows through a 2 Ω resistor when connected across a battery. The same battery supplies a current of 0.5 A when connected across a 9 \O resistor. The internal resistance of the battery is [CBSE AIPMT 2011]

(a) $1/3 \Omega$ (c) 1Ω

Ans. a

A student measures the terminal potential difference (V) of a cell (of emf ε and internal resistance r) as a function of the current (I) flowing through it. The slope and intercept of the graph between V and I, respectively, equal to ICBSE AIPMT 20091

(a) ε and $-\varepsilon$ (c) r and $-\varepsilon$

(b) $\vdash r$ and ϵ

(d) $-\varepsilon$ and r

Ans. b

For a cell, the terminal potential difference is 2.2 V when circuit is open and reduces to 1.8 V when cell is connected to a resistance $R = 5 \Omega$, the internal resistance [CBSE AIPMT 2002] (r) of cell is

(a)
$$\frac{10}{9}\Omega$$
 (b) $\frac{9}{10}\Omega$ (c) $\frac{11}{9}\Omega$ (d) $\frac{5}{9}\Omega$

Ans. a

. A cell has an emf 1.5 V. When connected across an external resistance of 2Ω , the terminal potential difference falls to 1.0 V. The internal resistance of the cell is [CBSE AIPMT 2000]

(a) 2Ω

(c) 1.0Ω

50

(d) 0.5Ω

Ans. c

The internal resistance of a cell of e.m.f. 2 volt is 0.1Ω . It is connected to a resistance of 3.9Ω . The voltage across the cell will be (in volt)

(a) 1.95 V

(b) 0.5 V

(c) 2 V (d) 1

(1995) AIIMS

Ans. a

A battery of emf 10 V and internal resistance 3 Ω is connected to a resistor. If the current in the circuit is 0.5 A, what is the resistance of the resistor?

(a)

Ans. c

A 6 V battery is connected to the terminals of a 3m long wire of uniform thickness and resistance of 100 Ω . The difference of potential between two points on the wire separated by a distance of 50 cm will be [CBSE AIPMT 2004]

Ans. c

Assertion: In a simple battery circuit, the point of the lowest potential is positive terminal of the battery.

Reason: The current flows towards the point of the higher potential, as it does in such a circuit from the negative to the positive terminal.

AIIMS (1996, 2002)

Ans. d

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/62

Video Solution on YouTube:-

https://youtu.be/ueQAsYkYtIM

@Physicsaholics

@Physicsaholics_prateek

@NEET_Physics

@<u>IITJEE_Physics</u>

physicsaholics.com

Unacademy

Links are also in the description of the video.

CUSIS NIKIS